Chem. Ber. 101, 4123-4143 (1968)

Ketenderivate, XIII²⁾

Stabile *p*-Chinodimethane, I: Synthesen und Eigenschaften

Aus dem Institut für Organische Chemie der Universität München

(Eingegangen am 11. Juni 1968)

Arylmalodinitrile und verwandte Verbindungen reagieren mit 1.3-Dithiolanium-, 1.3-Dithiolium-, Trithionium-, Tropylium- und Cyclopropenyliumsalzen zu farbigen "push-pull"stabilisierten *p*-Chinodimethanen. Vertreter dieser Verbindungsklasse erhält man auch durch Kondensation der genannten Benzylverbindungen mit γ -Pyronen, Diphenylcyclopropenon und Dichlor-diphenyl-methan. — Der Einfluß der Anellierung auf die Bindungsverhältnisse der Chinodimethane wird anhand der IR-Spektren und mit Hilfe von HMO-Rechnungen diskutiert.

In Fortführung unserer Untersuchungen über polare Chinonderivate (Chinonmethide^{3a)}, Thiochinonmethide^{3b)}, Chinonmethidimine^{3c)}) haben wir uns den Chinodimethanen zugewandt (vgl. auch l. c.^{3d)}).

Der Grundkörper der Klasse der *p*-Chinodimethane, Xylylen (1), polymerisiert sehr leicht⁴⁾. Als Maß für die Polymerisierungsneigung kann man die von *Coulson*⁵⁾ definierte freie Valenz *F* heranziehen, die bei 1 für die Positionen 7 und 8 den relativ hohen Wert von 0.97 besitzt⁶⁾.

Coppinger und Bauer⁷⁾ haben die Stabilität von chinoiden Systemen in Beziehung gesetzt zur Energiedifferenz zwischen chinoidem Grundzustand und benzoidem Übergangszustand (über den Folgereaktionen ablaufen sollen). Sie berechneten diese Energiedifferenz nach der einfachen HMO-Methode und fanden zunehmende Stabilität in der Reihe Chinodimethan – Chinonmethid – Chinon. Das bedeutet, daß die Stabilität zunimmt, wenn man die Elektro-

- 5) C. A. Coulson, Valence, 2. Aufl., S. 271, Verlag Oxford University Press 1961.
- 6) A. Streitwieser jr., Molecular Orbital Theory for Organic Chemists, 4. Aufl., S. 290, Verlag Wiley and Sons, New York 1967.
- 7) G. M. Coppinger und R. H. Bauer, J. physic. Chem. 67, 2846 (1963).

Teil der Dissertation H.-U. Wagner, Techn. Hochschule Stuttgart 1967; vgl. R. Gompper, E. Kutter und H.-U. Wagner, Angew. Chem. 78, 545 (1966); Angew. Chem. internat. Edit. 5, 517 (1966).

²⁾ XII. Mitteil.: R. Gompper und H. Schaefer, Chem. Ber. 100, 591 (1967).

 ³⁾ ^{3a)} R. Gompper, R. R. Schmidt und E. Kutter, Liebigs Ann. Chem. 684, 37 (1965);
 R. Gompper und E. Kutter, Chem. Ber. 98, 1365 (1965); ^{3b)} R. Gompper, E. Kutter und
 R. Schmidt, Chem. Ber. 98, 1374 (1965); ^{3c)} R. Gompper und H. D. Lehmann, Angew.
 Chem. 80, 38 (1968); ^{3d)} R. Gompper, E. Kutter und H. Kast, Angew. Chem. 79, 147 (1967);
 Angew. Chem. internat. Edit. 6, 171 (1967).

⁴⁾ Zusammenfassung: L. A. Errede und M. Swarc, Quart. Rev. 12, 30 (1958).

negativität der Positionen 7 und 8 erhöht (Ersatz von C-7 bzw. C-8 durch elektronegativere Heteroatome wie z. B. Sauerstoff oder Einführung von elektronenanziehenden Substituenten, die die Elektronegativität von C-7 bzw. C-8 erhöhen). Beispiele für derart stabilisierte Chinodimethane sind die Verbindungen $2-5^{8-10}$.

Das chinoide System läßt sich aber auch durch Substituenten stabilisieren, die die Beteiligung polarer Grenzstrukturen am Grundzustand begünstigen. Allgemein läßt sich diese Stabilisierung wie folgt (6 und 7) formulieren (push-pull-Effekt):

A = Elektronenakzeptor, D = Elektronendonator

In der Reihe der Chinonmethide sind zahlreiche Vertreter des Typs 6 (A = O) bekannt (vgl. 1. c. ^{3a, 11}). Wir haben versucht, Chinodimethane 7 unter Verwendung derselben Donatorsubstituenten, wie sie sich bei den Chinonmethiden bewährt hatten, aufzubauen.

Chinonmethide lassen sich durch elektrophile Substitution von Phenolen oder Phenolaten herstellen^{3a, 11}). Iso- π -elektronisch zu den Phenolen **8** sind die Amino-

Benzyl-Anion nach HMO

⁸⁾ W. R. Hertler und R. E. Benson, J. Amer. chem. Soc. 84, 3474 (1962), und vorhergehende Arbeiten.

⁹⁾ ^{9a)} J. Thiele und H. Balhorn, Ber. dtsch. chem. Ges. 37, 1463 (1904); ^{9b)} H. Staudinger, Ber. dtsch. chem. Ges. 41, 1355 (1908).

¹⁰⁾ ^{10a)} H. H. Wassermann, H. W. Ackermann, H. H. Wotiz und T. C. Lin, J. Amer. chem. Soc. **77**, 973 (1955); ^{10b)} R. D. Kimbrough jr., K. W. Kraus und J. J. Portridge jr., J. org. Chemistry **30**, 4333 (1965).

¹¹⁾ ¹¹a) A. S. Kende, J. Amer. chem. Soc. 85, 1882 (1963); ¹¹b) B. Föhlisch und P. Bürgle, Liebigs Ann. Chem. 701, 67 (1967); ¹¹c) R. v. Helden, A. T. ter Borg und A. F. Bickel, Recueil Trav. chim. Pays-Bas 81, 599 (1962); ¹¹d) Ch. Jutz und F. Voithenleitner, Chem. Ber. 97, 29 (1964).

benzole 9 und die Benzyl-Anionen 10. Bei allen drei Systemen wird durch die Donatorwirkung des Substituenten der elektrophile Angriff an den *o*- und *p*-Kernpositionen erleichtert.

Nach dem einfachen HMO-Modell werden 8–10 als (gestörte) Benzyl-Anion-Systeme behandelt. Die Ladungsverteilung im Benzyl-Anion entspricht der Elektronendichteverteilung im obersten besetzten, nicht bindenden Molekülorbital. Nach *Fukui* und Mitarbb.¹²⁾ spielt bei einem elektrophilen Angriff gerade diese Elektronendichteverteilung im obersten besetzten MO die entscheidende Rolle. Demnach sollten nach der α -Position auch die *o*und *p*-Positionen einem elektrophilen Angriff zugänglich sein (vgl. auch l. c.¹³⁾).

*Hine*¹⁴⁾ behandelt die Reaktivität des Benzyl-Anions nach dem "principle of least motion" und kommt zu dem Schluß, daß die Geschwindigkeit der Protonierung (als Modell für einen elektrophilen Angriff) in der Reihe α -C > p-C > o-C abnehmen müßte.

Zusammenfassend wäre nach der Theorie ein elektrophiler Angriff zuerst an der α -Position zu erwarten. Erst wenn dieser Angriff nicht möglich oder reversibel ist, sollte eine Reaktion an den anderen nucleophilen Zentren (*o*- und *p*-Position) eintreten (vgl. dazu l. c. ¹⁵).

Die Gültigkeit dieses Prinzips bestätigte sich bei den Umsetzungen von Phenolen und Phenolat-Ionen mit Schwefelkohlenstoff und mit stabilen Carboniumsalzen³⁾. Das Benzyl-Anion ist zu stark basisch, als daß man seine Reaktionen unter vergleichbaren Bedingungen untersuchen könnte (der Primärangriff am α -C-Atom ist unter keinen Umständen reversibel). Abhilfe kann hier nur die Einführung von elektronenanziehenden Resten am C- α schaffen; die Acidität der Benzylverbindungen müßte mit der der Phenole vergleichbar sein.

Betrachtet man als Modellsystem das Phenylmalodinitril (**12a**) bzw. sein Anion, so entspricht das Experiment den theoretischen Erwartungen. Die Alkylierung mit den verschiedensten Alkylierungsmitteln¹⁶⁾ und auch die Acylierung mit Chlorcyan¹⁷⁾ führt immer zu α -substituierten Produkten. Dagegen liefert, wie in den folgenden Abschnitten näher beschrieben wird, die Reaktion mit stabilisierten Carbonium-Ionen Produkte der *p*-Substitution. Es entstehen "push-pull"-stabilisierte Chinodimethane gemäß folgendem Schema:

- 12) K. Fukui, T. Yonezawa, C. Nagata und H. Shingu, J. chem. Physics 22, 1433 (1954).
- ¹³⁾ G. Russell, J. Amer. chem. Soc. 81, 2017 (1959).
- ¹⁴⁾ J. Hine, J. org. Chemistry 31, 1236 (1966).
- 15) R. Gompper, Angew. Chem. 76, 412 (1964).
- ¹⁶⁾ J. C. Hessler, Amer. chem. Journal **32**, 119 (1904); A. W. D. Awison und A. L. Morrison, J. chem. Soc. [London] **1950**, 1474; B. M. Iselin und K. Hoffmann, J. Amer. chem. Soc. **76**, 3220 (1954); A. C. Cope, L. Field, D. W. H. Mc Powell und M. E. Wright, ebenda **78**, 2547 (1956).
- ¹⁷⁾ J. K. Williams, E. L. Martin und W. A. Sheppard, J. org. Chemistry 31, 919 (1966).

A. Reaktionen mit Tris-alkyl(aryl)mercapto-carboniumsalzen

Aus Trithiokohlensäureestern erhält man mit Alkylierungsmitteln Tris-alkyl(aryl)mercaptocarboniumsalze^{3, 18)}.

Diese Salze reagieren mit C-Nucleophilen, wobei unter Abspaltung von Alkylmercaptan Ketenmercaptale, Chinonmethide oder neue Carboniumsalze gebildet werden^{3a,18)}. Es hat sich als vorteilhaft erwiesen, die cyclischen Carboniumsalze 11 zu benutzen, da bei ihnen Folgereaktionen (erneute nucleophile Substitution, vgl. l. c.³⁾) erschwert sind. Insbesondere die heteroaromatischen Systeme 11c und 11d eignen sich für die Umsetzung mit Nucleophilen.

Erhitzt man die Salze 11 mit Phenylmalodinitril (12a) und einer Base (Triäthylamin, Pyridin) in Eisessig zum Sieden, so färbt sich das Reaktionsgemisch schnell tiefviolett. Nach kurzer Zeit fallen tiefblaue feine Nadeln aus. Nach den Elementaranalysen, IR- und NMR-Spektren (NMR-Daten s. folgende Arbeit) muß den neuen Verbindungen die Struktur 13 zugeordnet werden. Zur Bildung von *p*-Benzochinodimethanen (13) sind weiterhin auch die Benzylverbindungen 12b-12d befähigt; sie besitzen ähnliche Acidität wie das Phenylmalodinitril ($pK_a = 5.8^{19}$).

Auch die α -Naphthylmethyl- und Anthryl-(9)-methylverbindungen 14 und 16 reagieren mit den Salzen 11. Es entstehen die 1.4-Naphtho- bzw. 9.10-Anthrachinodimethane 15 und 17.

 ¹⁸⁾ L. Soder und R. Wizinger, Helv. chim. Acta 42, 1779 (1959); R. Mayer und K. Schäfer,
 J. prakt. Chem. 26, 279 (1964); E. Klingsberg, J. Amer. chem. Soc. 86, 5290 (1964);
 K. Hartke, E. Schmidt, M. Castillo und J. Bartulin, Chem. Ber. 99, 3268 (1966).

¹⁹⁾ H. D. Hartzler, J. Amer. chem. Soc. 86, 2174 (1964).

Die neuen Chinodimethane (Tab. 1) sind sehr schwerlösliche, tieffarbige Verbindungen. Auf ihre Elektronenspektren soll in einer späteren Abhandlung eingegangen werden (vgl. l. $c.^{20}$).

		$\xrightarrow{R^3}$	13	Char	akteristisch	e IR-Band	en ^{a)}
	R ¹ /R ²	R ³	R4	$v_{\rm C} = N$	νc=o	$\nu_{C=C}$	<i>p</i> -subst. Benzol
13a	-[CH ₂] ₂ -	CN	CN	2185 s 2165 m	_	1585 s	820 s
13 b	-[CH ₂] ₃ -	CN	CŇ	2190 s 2160 m		1595 s	830 s
13c	-CH=CH-	CN	CN	2180 s 2160 m	No Films	1590 s	820 s
13d	o-C ₆ H ₄ -	CN	CN	2200 s 2175 s		1595 s	818 s
13 e	-[CH ₂] ₂ -	0-C61	$H_4(CO)_2$		1635 s	1585 s 1532 m	835 s
13f	<i>o</i> -C ₆ H ₄	<i>o</i> -C ₆ H	$H_4(CO)_2$		1625 m 1610 m	1573 m 1518 m	832 s
13g	o-C ₆ H ₄ -	CN	СОСН3	2170 s	1630 s	1590 s	830 s
13h	o-C ₆ H ₄ -	H ₃ CN OC	NCH ₃ CO		1690 s 1630 s	1600 s	835 s

Tab. 1. Dargestellte ω . ω -Dimercapto-chinodimethane 13, 15, 17 und 18

20) R. Gompper und H.-U. Wagner, Tetrahedron Letters [London] 1968, 165.

Chemische Berichte Jahrg. 101

Tabelle 1 (Fortsetzung)

		$\stackrel{R^3}{\underset{R^4}{\longrightarrow}}$ 15		Charakteris	tische IR-Bai	nden ^{a)}
	$\mathbf{R}^{1}/\mathbf{R}^{2}$	R ³	R4	$v_{\rm C} \equiv N$	vc≔O	vc≕c
15a	[CH ₂] ₂	CN	CN	2185 s 2170 s		1580 s
15 b	-[CH ₂] ₃ -	CN	CN	2200 s	20. RM	1590 s
15c	-CH=CH-	CN	CN	2200 s 2180 m		1590 s
15d	o-C6H4-	CN	CN	2195 s	for some	1590 s
15e	$-[CH_2]_2-$	o-C ₆ H ₄ (C	CO) ₂		1640 s	1560 m
	R ¹ S R ² S	$\overset{\mathrm{R}^3}{\underset{\mathrm{R}^4}}$ 17				
17a	$-[CH_2]_2-$	CN	CN	2205 m		1580 m
17 b	$-[CH_2]_3-$	CN	CN	2208 m		1590 m
17c	-CH=CH-	CN	CN	2205 m		1585 m
17d	$o-C_6H_4-$	CN	CN	2215 m		1590 m
17e	$-[CH_2]_2-$	$CO_2C_2H_5$	CN	2205 m	1725 s	1580 m
17f	$o-C_6H_4-$	$CO_2C_2H_5$	CN	2200 m	1705 s	1580 m
17g	$-[CH_2]_2-$	<i>o</i> -C ₆ H ₄ (C	CO) ₂		1680 s	1590 m
17h	o-C ₆ H ₄	<i>o</i> -C ₆ H ₄ (C	CO) ₂		1685 s	1590 m
	R ¹ S R ² S R ²	18 				
18a	-[CH ₂] ₂ -	CN	CN	2220 m		1580 m
18b	o-C6H4-	CN	CN	2230 m		1580 m

a) Fest in KBr, in cm¹. – Intensitätsangaben: s = stark, m = mittel.

Das Chinodimethan 13a läßt sich mit Perhydrol/Eisessig zu Terephthalsäure abbauen. Damit und mit den in der folgenden Arbeit beschriebenen Austauschreaktionen, die zu bekannten *p*-Chinodimethanen führen, ist die *p*-chinoide Struktur bewiesen. In keinem Fall wurden bei den Umsetzungen von 11 mit 12 und 14 *o*-Substitutionsprodukte erhalten. Auch in den Chromatogrammen der Reaktionslösungen konnten sie nicht nachgewiesen werden (die *o*-Chinodimethane müßten etwa die gleiche Farbe haben wie die entsprechenden *p*-Chinodimethane, vgl. 1. c. ^{3d, 21}). Dreiding-Modelle von *o*-Chinodimethanen zeigen, daß keine wesentliche sterische Hinderung vorliegt. Dementsprechend führt auch die Umsetzung von Phenanthryl-(9)malodinitril (19) zu den *o*-Chinodimethanen 18 (s. Tab. 1).

21) R. Weiß, Dissertation, Univ. München 1968.

Die 3-Phenyl-cumaranone 20a und 21a lassen sich mit 11 gleichfalls zu Chinodimethanen umsetzen, doch sind hier prinzipiell zwei p-Positionen (p^A und p^B) einem elektrophilen Angriff zugänglich. Demnach könnten die erhaltenen Produkte die Strukturen 23 und 24 haben:

Anhand der Dreiding-Modelle wird deutlich, daß die *o*-Wasserstoffatome die Einebnung des Rings B in die Ebene des Anions 22 erheblich behindern. Zur Konjugation mit der elektronenanziehenden Carbonylgruppe ist aber diese Einebnung notwendig. Demnach sollte die Substitution bevorzugt an p^A erfolgen. Der Nachweis gelang durch Blockierung der p^B -Position, d. h. durch Umsetzung von *p*-Tolylcumaranonen (20b und 21b) mit 11. Die Elektronenspektren der Chinodimethane 23a und 23b stimmen praktisch überein (vgl. Tab. 2). Damit scheidet Struktur 24 aus. Analog läßt sich die Struktur von 23c, d und 25a – d beweisen (vgl. Tab. 2).

Die mesomeren Grenzstrukturen des Ylids 26 veranschaulichen, daß auch dieses System einem elektrophilen Angriff in *p*-Stellung zugänglich sein sollte. Erhitzt man 26 mit 11d in Eisessig zum Sieden, so erhält man ein tiefviolettes Salz, das sich als Perchlorat isolieren läßt.

Das Elektronenspektrum von 27 schließt sich sehr eng an das von 13d an. Die Cyanbande erscheint im IR-Spektrum bei 2160/cm, die Bande für *para*-substituierte Ringe bei 830/cm.

Tab. 2. Dargestellte $\omega.\omega$ -Dimercapto-chinodimethane 23 und 25

		23	Charakte IR-Ban	ristische den ^{a)}	$\lambda_{max}^{CHCl_3}(\log \epsilon)^{b)}$
	R^{1}/R^{2}	R ³	vс=0	VC≕C	
23a	[CH ₂] ₂	н	1705 s	1620 m	505 (4.58)
23 b	[CH ₂] ₂	CH ₃	1705 s	1630 m	513 (4.65)
23 c	o-C6H4	Н	1717 s	1630 m	565 (4.60)
23 d	o-C6H4	CH ₃	1730 s	1635 m	570 (4.62)
		25			
25 a	-[CH ₂] ₂ -	Н	1700 s	1620 m	470 (4.62)
25 b	$-[CH_2]_2 -$	CH3	1685 s	1630 m	476 (4.64)
25 c	o-C ₆ H ₄ -	Н	1715 s	1620 w 1520 m	520 (4.60)
25 d	$o-C_6H_4-$	CH ₃	1685 s	1635 m	520 (4.68)

a) vgl, Tab. 1.

b) Längstwellige Banden des Elektronenspektrums in nm.

B. Reaktionen mit Trithioniumsalzen

3-Alkylmercapto-dithioliumsalze setzen sich meist glatt mit C-Nucleophilen um (vgl. l. c.²²⁾). Nach dem im vorigen Abschnitt beschriebenen Verfahren gelingt auch die Umsetzung der Carbonium-Ionen **28** mit Benzyl-Anionen zu tieffarbigen und sehr schwer löslichen Chinodimethanen **29**. Analog werden die Chinodimethane **30**-**32** synthetisiert (s. Tab. 3).

²²⁾ H. Prinzbach und E. Futterer in Advances in Heterocyclic Chemistry 7, S. 39, Academic Press, New York und London 1966; E. Klingsberg und A. M. Schreiber, J. Amer. chem. Soc. 84, 2943 (1962).

		Ch	arakteristische	e IR-Banden a)
С	hinodimethan	$\nu_{C} \equiv N$	ν C= Ο	VC=C	<i>p</i> -subst. Benzol
29a	NC S-S NC Ph	2190 s 2165 s	-	1580 s	820 s
29 b	NC S-S	2190 s 2165 s		1605 s 1580 s	825 s
30a	NC S-S Ph	2195 s 2180 s		1585 s	
30Ъ	NC S-S	2200 s 2180 s		1570 s 1540 s	
31a R = CN	NC S	2210 m	-	1560 — 1480 m	
31b R = CC	R P2C2H5	2205 w	1745 s	1635— 1540 m	
32			1695 s	1620 m	

Tab. 3. p-Chinodimethane aus Arylmethyl-Anionen und Trithioniumsalzen

a) In cm⁻¹, fest in KBr, vgl. Tab. 1.

C. Reaktionen mit Tropyliumsalzen

Das Tropylium-Ion ist iso- π -elektronisch mit den in den vorigen Abschnitten beschriebenen 1.2- und 1.3-Dithiolium-Ionen (vgl. l. c.²²⁾). Da das Äthoxytropyliumsalz 33 mit Malodinitril das Dicyanheptafulven 34 liefert²³⁾, konnte man erwarten, daß mit Phenylmalodinitril (12a) ein Chinodimethan entstehen würde.

²³⁾ K. Hafner, W. Riedel und M. Danielisz, Angew. Chem. 75, 344 (1963).

Erwärmen von 33 mit 12a und Triäthylamin in Diäthylenglykoldimethyläther ergab eine schmutzigblaue Lösung, aus der sich durch präparative Schichtchromatographie eine geringe Menge einer blauen Substanz isolieren ließ, deren IR-Spektrum die für das Chinodimethan 35 erwarteten Banden zeigt ($v_{C \equiv N}$ 2190, 2150/cm stark, $v_{C=C}$ 1590–1550/cm stark, *para*-Substitution 825/cm stark; fest in KBr). Das Elektronenspektrum ist den Spektren der iso- π -elektronischen Chinodimethane 13c und 29a sehr verwandt.

Im Methoxytropyliden (36) als potentiellem Tropylium-Ion ist die Methoxygruppe durch Nucleophile austauschbar (vgl. die Umsetzung mit Phenol, die letzten Endes zu einem p-Chinonmethid führt^{11d}).

Mit Phenylmalodinitril reagiert 36 bei Raumtemperatur unter Selbsterwärmung zum Tropyliden 37 (spektrale Daten in Tab. 4). 37 ist unlöslich in Alkali.

Verb.	Haliphat	NMR-Signale ^{a)} H _{olefin}	Haromat	IR-Banden ^{b)} VC≡N
37	7.8 b (1)	3.3 b (2) 3.7 b (2) 4.6 b (2)	2.5 m (5)	2260 w
38	7.2 t (1) 5.1 s (1)	3.3 m (2) 3.7 m (2) 4.6 m (2)	2.2 s (4)	2280 w
39	7.1 b (1)	3.3 b (2) 3.7 b (2) 4.5 b (2)	1.5-2.6 (7)	2265 w

Tab. 4. Dargestellte Tropylidene 37-39

a) Chem. Verschiebungen in τ , gemessen in CDCl₃, internes TMS = 10, b = breit, m = Multiplett, t = Triplett, s = Singulett, in Klammern: relative Intensität. b) Fest in KBr, in cm⁻¹, w = schwache Bande.

Erhitzt man die Komponenten dagegen in Eisessig/Triäthylamin, so entsteht ein zu 37 isomeres Produkt, das sich mit wäßrigem Alkali abtrennen und aus dieser Lösung mit Säure ausfällen läßt. Die Löslichkeit in Alkali weist auf Struktur 38 hin, ebenso die Spektren (Tab. 4). Während das IR-Spektrum von 37 zwischen 800 und 900/cm keine Banden aufweist, erscheint bei 38 die für *para*-Substitution charakteristische Bande (vgl. l. c.²⁴) bei 835/cm.

α-Naphthylmalodinitril setzt sich mit 36 bei Raumtemperatur zu 39 um.

²⁴⁾ W. Brügel, Einführung in die Ultrarotspektroskopie, S. 389, Verlag D. Steinkopff, Darmstadt 1962.

D. Reaktionen mit Cyclopropenyliumsalzen

Die Bildung von Chinonmethiden aus Phenolen und Cyclopropenyliumsalzen^{11b)} regte dazu an, auf analoge Weise Chinodimethane zu synthetisieren.

*Eicher*²⁵⁾ erhielt aus **40** und Phenylmalodinitril in der Kälte das Produkt **41**. Wir führten die Umsetzung bei 100° in Eisessig/Triäthylamin durch und konnten aus der tiefroten Reaktionslösung in geringer Ausbeute das Chinodimethan **42** isolieren.

Man kann die Bildung von 41 ebenso wie die von 37 als kinetisch gesteuerte Reaktion interpretieren; thermodynamischer Reaktionsabschluß liefert 42 bzw. 38.

Einfacher und mit besserer Ausbeute erhält man **42** durch kurzes Erhitzen von Diphenylcyclopropenon mit Phenylmalodinitril in Acetanhydrid entsprechend dem von *Kende*²⁶⁾ entwickelten Verfahren. Die Lösung färbt sich schnell tiefrot. Beim Erkalten kristallisiert **42** aus. Analog gelingt die Synthese von **43** und **44** (s. Tab. 5).

		Charakte	ristische IR-	Banden ^{a)}	
(Chinodimethan	$\nu_{C} \equiv N$	ν	<i>p</i> -subst. Benzol	
42	NC Ph	2190 s 2155 s	1820 s	831 s	
43	NC Ph	2185 s 2160 s	1820 s		
44	NC Ph	2205 m	1820 s		

Tab. 5. Chinodimethane aus Diphenylcyclopropenon und Arylmalodinitrilen

a) In cm⁻¹, fest in KBr, vgl. Tab. 1.

E. Reaktionen mit y-Pyronen und Dithio-y-Pyron

Schon vor den Cyclopropenonen waren γ -Pyrone mit methylenaktiven Verbindungen umgesetzt worden²⁷⁾. Unsere Versuche, auf dieser Basis durch Verwendung der aktivierten Benzylverbindungen zu Chinodimethanen der γ -Pyranreihe zu gelangen, verliefen, wie die Bildung von **45a** zeigt, erfolgreich (weitere Beispiele s. Tab. 6). **47c** wurde analog aus 2.6-Diphenyl-dithio- γ -pyron und **16a** synthetisiert.

²⁵⁾ Th. Eicher, persönliche Mitteilung.

²⁶⁾ A. S. Kende und P. T. Izzo, J. Amer. chem. Soc. 87, 4162 (1965).

²⁷⁾ Vgl. G. Seitz, Angew. Chem. 79, 96 (1967), dort weitere Lit.

Tab. 6. Chinodimethane aus y-Pyronen und Arylmalodinitrilen

Chinadimathan	Charak	teristische IR-	Banden ^{a)}	
Chinodiniethan	۷C≡N	VC = C	p-subst. Benzol	
45a : R ≈ Ph R CN	2195 s 2160 s	1640 s	820 s	
45b: R = CH ₃ R	2195 s 2150 s	1650 s	828 s	
46 P_{h} C_{N}	2180 s	1630 s		
47a: $X = O$ R = Ph R	2200 m	1645 s		
$47b: X = O \\ R = CH_3$	2210 m	1670 s		
47c: X = S $R = Ph$	2205 m	1650 s		
48 Ph-O-CN Ph-O-CN Ph	2205 m	1640 s		

a) In cm⁻¹, fest in KBr, vgl. Tab. 1.

F. Reaktionen mit Benzophenondichlorid

Durch Einwirkung von Benzophenondichlorid auf das Na-Salz von 20a waren von mehreren Arbeitsgruppen¹⁰⁾ die eingangs erwähnten Chinodimethane 5 erhalten worden. Auch Phenylmalodinitril läßt sich mit Benzophenondichlorid zum Chinodimethan 49 umsetzen. Die orangerote Verbindung zeigt im IR-Spektrum eine nicht aufgespaltene, intensive Nitrilbande bei 2200/cm. Die *para*-Substitutionsbande erscheint bei 835/cm.

Diskussion der IR-Spektren

In den IR-Spektren *p*-substituierter Benzolsysteme tritt zwischen 800 und 850/cm eine charakteristische Bande auf 25 . Diese Bande findet man auch in den IR-Spektren *p*-chinoider Systeme wie z. B. **50** und **2**:

Alle in den vorstehenden Tabellen aufgeführten *p*-Benzochinodimethane zeigen in diesem Bereich ihrer IR-Spektren eine intensive, scharfe Bande. Sie ist so charakteristisch, daß sie in dieser Arbeit als Indiz für das Vorliegen eines *p*-benzochinoiden Systems verwendet wurde. Im Falle der Chinodimethane **23** und **25** und auch bei den Naphtho- und Anthrachinodimethanen treten um 800/cm weitere Banden auf, so daß keine einwandfreie Zuordnung mehr möglich ist (vgl. 1. c.²⁵).

Nähere Aufschlüsse über die Bindungsverhältnisse in den Chinodimethansystemen geben die Cyan- und Carbonylbanden.

Bei den cyansubstituierten *p*-Benzochinodimethanen treten sehr intensive, meist aufgespaltene Banden zwischen 2150 und 2200/cm auf. Die tiefe Lage weist auf starke Konjugation der Cyangruppen mit dem chinoiden System und einen großen Anteil der polaren Grenzstruktur am Grundzustand hin. Dafür spricht auch der Vergleich mit den Cyanbanden des Phenylmalodinitril-Anions²⁸:

Lage und Aufspaltung der Cyanbande sind von der Art der Donatorreste am chinoiden System abhängig. Beim Chinodimethan **49** (Abschn. F) z. B. ist die Cyanbande nicht mehr aufgespalten und liegt relativ hoch.

Vergleicht man die IR-Spektren der Benzo-, Naphtho- und Anthrachinodimethane (im folgenden abgekürzt als B, N, A), so zeigen die Cyanbanden auffallende Unterschiede. Die Intensität der Cyanbanden nimmt in den Reihen B - N - A ab. Ebenso wird die Aufspaltung in diesen Reihen schwächer. Sie beträgt bei den Benzochinodimethanen ca. 25/cm und bei den Naphthochinodimethanen ca. 15/cm (in einigen Fällen ist sie hier schon nicht mehr zu beobachten). Bei den Anthrachinodimethanen findet man keine Aufspaltung mehr.

Wie bei den Cyanbanden beobachtet man auch bei den Carbonylbanden der entsprechenden Chinodimethane einen Anstieg der Wellenzahlen in der Reihe B-N-A. Nach diesen Befunden kommt man zu dem Schluß, daß die Konjugation zwischen Donator- und Akzeptorgruppen in der Reihe *p*-Benzo-, 1.4-Naphtho-, 9.10-Anthrachinodimethan schwächer wird.

Durch das einfache HMO-Modell²⁹⁾ wird dieser Effekt signifikant wiedergegeben (s. Tab. 7).

²⁸⁾ Dissertation H. Hindermayr, Univ. München 1967.

^{29) 1.}c.6), S. 234.

Donatorteil	Chinodi- methan	$VC \equiv N$ (cm ⁻¹)	π-Bindungs- ordnung der C=N-Bindung ^{a)}	Chinontyp ^{b)}
	13a	2185, 2165	0.9272	В
_د بل	15 a	2185, 2170	0.9312	N
تية	17a	2205	0.9350	Α
	18a	2220	0.9342	Р
	13 d	2200, 2175	0.9199	В
<u>(_</u>)	15 d	2195	0.9259	N
s. s	17 d	2215	0.9321	А
¥	18 b	2230	0.9312	Р
.	2 9 a	2190, 2165	0.9138	В
s_1	30 a	2195, 2180	0.9208	N
Pb	31 a	2210	0.9287	A
K	42	2190, 2155	0.9089	В
Δ	43	2185, 2160	0.9159	N
Ph Ph	44	2205	0.9249	Α

Tab. 7. Vergleich der Cyan-Wellenzahlen mit der π -Bindungsordnung nach HMO

a) Angegeben ist die π-Bindungsordnung für die in Konjugation stehende π-Bindung, für die orthogonale, senkrecht dazu stehende zweite π-Bindung der Cyangruppe ist noch der Wert 1 zu addieren.
b) B = p-Benzo-, N = 1.4-Naphtho-, A = 9.10-Anthra-, P = 9.10-Phenanthrenchinodimethan.

Leider ist die Variationsbreite der Cyan-Wellenzahlen nicht groß genug, um auch den Einfluß der verschiedenen Donatoren erkennen zu lassen. Die für die Heteroatome gewählten Parameter (s. exp. Teil) beeinflussen nur den Absolutwert der angegebenen π -Bindungsordnungen, die Abnahme der Konjugation mit zunehmender Anellierung wird in jedem Fall reproduziert. Sie ist offensichtlich von der Topologie der Systeme abhängig.

Auch zur Interpretation der Carbonyl-Wellenzahlen der nachstehenden Chinonmethide^{1,3)} kann das HMO-Verfahren herangezogen werden. Wachsende Bindungsordnung entspricht einer Zunahme der Carbonyl-Wellenzahl:

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie sind wir für die Förderung dieser Untersuchung zu großem Dank verpflichtet.

Herrn Prof. Dr. H. Zimmermann, Herrn Dr. H. Baumgärtel, Herrn Dipl.-Phys. J. Brickmann und Herrn Dipl.-Phys. E. Schulte-Steinberg danken wir sehr für die Überlassung eines HMO-Rechenprogramms und ihre freundliche Hilfe. Unser Dank gilt auch der Bayerischen Akademie der Wissenschaften für die Gewährung von Rechenzeit an der elektronischen Datenverarbeitungsanlage des Leibnitz-Recheninstituts.

Beschreibung der Versuche

Fast alle Chinodimethane zersetzten sich ab etwa 200° ohne zu schmelzen; so ist es nicht möglich, die hier synthetisierten Chinodimethane durch Schmelzpunkte zu charakterisieren. Die bei den übrigen Produkten angegebenen Schmelzpunkte sind nicht korrigiert. Alle Produkte waren chromatographisch einheitlich (Kieselgel Merck PF₂₅₄, Chloroform).

Die IR-Spektren wurden in KBr mit einem Perkin-Elmer-Infrarotspektrographen Modell 125 und einem Leitz-IR-Spektrographen Modell IR III-NaCl, die NMR-Spektren mit einem Varian A-60-MHz-Gerät (bei 35°) unter der Leitung von Herrn *H. Huber* aufgenommen. Die C,H,N-Analysenwerte wurden mit Heraeus-Mikro-Verbrennungsgeräten von Herrn *H. Schulz* und Frau *L. Schwarz* bestimmt.

Umsetzung von aciden Benzylverbindungen mit Methylmercaptocarboniumsalzen: 0.01 Mol Trithiocarbonat bzw. Trithion wurden mit 0.01 Mol Dimethylsulfat etwa 30 Min. auf die unten angegebene Temperatur erhitzt (Bildung der Carboniumsalze 11).

Thion	Reaktionstemp.
Trimethylentrithiocarbonat	100°
Äthylentrithiocarbonat	100°
Vinylentrithiocarbonat	120°
o-Phenylentrithiocarbonat	160°
5-Phenyl-trithion	120°
Benzotrithion	120°

Zu der erhaltenen heißen Schmelze wurde eine heiße Lösung von 0.01 Mol *Benzylverbindung* in 5-20 ccm Eisessig und 0.01 Mol *Triäthylamin* oder *Pyridin* gegeben und das Gemisch rasch zum Sieden erhitzt. Ebenso rasch zeigte sich die Farbe des Reaktionsprodukts. In einigen Fällen kristallisierte das Produkt schon in der Hitze aus, meist beim Abkühlen oder auch nach einiger Zeit im Kühlschrank. Die Produkte (s. Tab. 8) fielen häufig in analysenreiner Form an. Sie wurden abfiltriert und gut mit Eisessig, dann Äthanol und Äther gewaschen. Zum Umkristallisieren eignete sich besonders Eisessig oder Diäthylenglykoldimethyläther, weniger gut Dimethylformamid, in dem sie sich zwar lösten, bei höherer Temperatur aber oft zersetzten.

7-[a.a-Dicyan-benzyl]-tropyliden (37): 1.4 g (0.01 Mol) Phenylmalodinitril (12a) und 1.2 g (0.01 Mol) 7-Methoxy-tropyliden (36) reagierten unter Selbsterwärmung zu einer alsbald erstarrenden Masse, die aus Cyclohexan umkristallisiert wurde. 2.1 g (91%) farblose Nadeln vom Schmp. 116°.

C₁₅H₁₂N₂ (232.3) Ber. C 82.74 H 5.20 N 12.06 Gef. C 83.13 H 5.15 N 11.78

7-[p-Dicyanmethyl-phenyl]-tropyliden (38): 1.4 g (0.01 Mol) 12 a wurden in 1 g Triäthylamin und 4 g Eisessig bei 100° gelöst und dazu 1.2 g (0.01 Mol) 36 gegeben. Nach einer Stde. bei 100° wurde die Mischung abgekühlt, in 100 ccm Wasser gegossen, die wäßr. Lösung mit Natronlauge alkalisch gemacht, filtriert, das Filtrat dreimal ausgeäthert und mit verd. Salzsäure angesäuert. Nach eintägigem Stehenlassen im Kühlschrank waren 1.1 g (48%) hellbraune Kristalle ausgefallen. Aus Cyclohexan farblose Nadeln vom Schmp. 72°.

C15H12N2 (232.3) Ber. C 82.74 H 5.20 N 12.06 Gef. C 82.23 H 5.23 N 11.82

7-[α -Naphthyl-dicyan-methyl]-tropyliden (39): Aus 1.2 g (0.01 Mol) 36 und 1.9 g (0.01 Mol) α -Naphthyl-malodinitril (14a) wurden analog 37 2.3 g (82%) farblose Nadeln vom Schmp. 127° (Methanol) erhalten.

 $C_{20}H_{14}N_2$ (282.3) Ber. C 85.08 H 5.00 N 9.92 Gef. C 84.90 H 4.95 N 10.23

		Tab. 8	. Chinod	imethane	aus Benzyl-Anioner	n und Carbo	nium-Ionen	
	Produkte	Ausb. %	Eduk	te ^{a)} E	Farbe und Form	Umkrist. aus ^{b)}	Summenformel (MolGew.)	Analyse C H N
	-p-benzochinodimethan							
13a	7.7-Äthylendimercapto- 8.8-dicyan-	45	12a	11a	Violette, glänzende Nadeln	D	$C_{12}H_8N_2S_2$ (244.3)	Ber. 59.00 3.30 11.47 Gef. 59.05 3.31 11.18
13b	7.7-Trimethylendimercapto- 8.8-dicyan-	8	12 a	11 b	Violette Nädelchen	EE	C ₁₃ H ₁₀ N ₂ S ₂ (258.4)	Ber. 60.47 3.90 10.85 Gef. 60.87 3.83 11.02
13c	7.7-Vinylendimercapto- 8.8-dicyan-	50	12a	11c	Blaue, verfilzte Nädelchen	D	C ₁₂ H ₆ N ₂ S ₂ (242.3)	Ber. 59.51 2.50 Gef. 59.48 2.48
13d	7.7-0-Phenylendimercapto- 8.8-dicyan-	48	12a	11 d	Blaue Nädelchen	EE	$C_{16}H_8N_2S_2$ (292.4)	Ber. 65.73 2.76 9.57 Gef. 66.08 2.94 9.51
13e	7.7-Äthylendimercapto- 8.8-phthaloyl-	ŝ	12c	11 a	Blauschwarze Nädelchen	ł	C ₁₈ H ₁₂ O ₂ S ₂ (324.4)	Ber. 66.64 3.73 Gef. 66.36 3.61
13f	7.7-0-Phenylendimercapto- 8.8-phthaloyl-	8	12c	b1 t	Blaue Nädelchen	EE	C ₂₂ H ₁₂ O ₂ S ₂ (372.5)	Ber. 70.94 3.25 Gef. 70.75 3.28
13 g	7.7-0-Phenylendimercapto- 8-acetyl-8-cyan-	10	12 b	11 d	Violette Nadeln	EE	C ₁₇ H ₁₁ NOS ₂ (309.4)	Ber. 65.99 3.58 Gef. 65.17 3.58
13h	1.3-Dimethyl-5-[4-0-phenylen- dimercaptomethylen- cyclohexadien-(2.5)-yliden]- barbitursäure	10	12 d	11d	Blaue Nadeln	EE	C ₁₉ H ₁₄ N ₂ O ₃ S ₂ (382.5)	Ber. 59.67 3.69 7.32 Gef. 59.75 3.93 7.13
	-1.4-naphthochinodimethan							
15a	9.9-Äthylendimercapto- 10.10-dicyan-	33	14a	11a	Violette Nadeln	ł	$C_{16}H_{10}N_2S_2$ (294.4)	Ber. 65.28 3.43 9.52 Gef. 64.95 3.29 9.46
15 b	9.9-Trimethylendimercapto- 10.10-dicyan-	10	14 a	11b	Violette Schuppen	D	$C_{17}H_{12}N_2S_2$ (308.4)	Ber. 66.20 3.92 Gef. 66.42 4.07

15c	9.9-Vinylendimercapto- 10.10-dicyan-	41	14a	11c	Blaue Nädelchen	D	C ₁₆ H ₈ N ₂ S ₂ (292.4)	Ber. 6 Gef. 6	5.73 2.74 5.42 2.84	9.58 9.74
15d	9.9-0-Phenylendimercapto- 10.10-dicyan-	41	14a	11 d	Blaue Nadeln	D	$C_{20}H_{10}N_2S_2$ (342.4)	Ber. 7 Gef. 6	0.15 2.93 9.86 3.01	8.18 7.89
15e	9.9-Äthylendimercapto- 10.10-phthaloy1-	25	14b	11 a	Grünschwarze Kristalle	I	C ₂₂ H ₁₄ O ₂ S ₂ (374.5)	Ber. 7 Gef. 6	0.57 3.77 9.59 3.82	
17a	-9.10-anthrachinodimethan 11.11-Äthylendimercapto- 12.12-dicyan-	62	16a	11 a	Rote Nadeln	I	C ₂₀ H ₁₂ N ₂ S ₂ (344.4)	Ber. 6 Gef. 6	9.74 3.52 9.90 3.46	8.13 8.16
17b	11.11-Trimethylendimercapto- 12.12-dicyan-	10	16a	11 b	Rote Nädelchen	I	C ₂₁ H ₁₄ N ₂ S ₂ (358.4)	Ber. 7 Gef. 7	0.35 3.94 0.12 3.80	7.82 8.15
17c	11.11-Vinylendimercapto- [2.12-dicyan-	40	16a	11c	Violette Blättchen	l	$C_{20}H_{10}N_2S_2$ (342.4)	Ber. 7 Gef. 7	0.15 2.93 0.29 3.12	8.18 7.72
17d	11.11-o-Phenylendimercapto- 12.12-dicyan-	46	16a	11 d	Violettrote Nädelchen	1	C ₂₄ H ₁₂ N ₂ S ₂ (392.4)	Ber. 7 Gef. 7	3.44 3.09 3.28 3.31	
17e	11.11-Äthylendimercapto- 12-äthoxycarbonyl-12-cyan-	PSC ^{c)}	16c	11 a	Rotes Pulver	Ä	C ₂₁ H ₁₇ NO ₂ S ₂ (379.5)	Ber. 6 Gef. 6	7.51 4.38 8.23 4.23	3.58 3.57
17f	11.11-o-Phenylendimercapto- 12-äthoxycarbonyl-12-cyan-	PSC ^{c)}	16c	þll	Rote, grobe Kristalle	EE	C ₂₆ H ₁₇ NO ₂ S ₂ (439.5)	Ber. 7 Gef. 7	1.06 3.88 0.60 3.87	3.19 3.16
17g	11.11-Äthylendimercapto- 12.12-phthaloyl-	19	16b	11 a	Rotes Pulver	EE	C ₂₆ H ₁₆ O ₂ S ₂ (424.5)	Ber. 7 Gef. 7	'3.56 3.80 2.88 3.79	
17h	11.11-0-Phenylendimercapto- 12.12-phthaloyl-	35	16b	11d	Rotbraune Blättchen	4	C ₃₀ H ₁₆ O ₂ S ₂ (472.6)	Ber. 7 Gef. 7	6.24 3.41 6.51 3.39	
	-9.10-phenanthrenchinodimeth	ian				;				
18a	11.11-Äthylendimercapto- 12.12-dicyan-	PSC c)	19	11a	Orangerote Kristalle	Ä	$C_{20}H_{12}N_2S_2$ (344.4)	Ber. 6 Gef. 7	9.74 3.52 0.00 3.48	8.13 7.94
18b	<pre>11.11-o-Phenylendimercapto- 12.12-dicyan-</pre>	PSC c)	19	11d	Violettrotes Pulver	Ä	C ₂₄ H ₁₂ N ₂ S ₂ (392.4)	Ber. 7 Gef. 7	3.44 3.09 3.81 3.23	

				Tabe	elle 8 (Fortsetzung)			
	Produkte	Ausb. %	Edul N	kte ^{a)} E	Farbe und Form	Umkrist. aus ^{b)}	Summenformel (MolGew.)	Analyse C H N
	Lacton des							
2 3a	3-Hydroxy-7.7-äthylen- dimercapto-8-phenyl- 8-carboxy- <i>p</i> -benzochino- dimethans	10	20 a	11 a	Tiefviolette Nadeln		C ₁₇ H ₁₂ O ₂ S ₂ (312.4)	Ber. 65.36 3.88 Gef. 65.39 3.90
23 b	3-Hydroxy-7.7-äthylen- dimercapto-8-p-tolyl-8-carbo p-benzochinodimethans	30 xy-	20b	11 a	Rotviolette Nadeln	EE	C ₁₈ H ₁₄ O ₂ S ₂ (326.4)	Ber. 66.22 4.33 Gef. 65.92 4.31
23 c	3-Hydroxy-7.7-0-phenylen- dimercapto-8-phenyl- 8-carboxy-p-benzochino- dimethans	78	20a	11d	Violette Nadeln	DMSO/ Ä	C ₂₁ H ₁₂ O ₂ S ₂ (360.4)	Ber. 69.98 3.36 Gef. 69.63 3.29
23d	3-Hydroxy-7.7.0-phenylen- dimercapto-8-p-tolyl- 8-carboxy-p-benzochino- dimethans	24	20 b	11 d	Blauschwarze Nädelchen	DMSO/ Ä	C ₂₂ H ₁₄ O ₂ S ₂ (374.5)	Ber. 70.56 3.77 Gef. 70.39 3.83
2 5a	3-Hydroxy-9.9-äthylen- dimercapto- 10-phenyl-10-carboxy- 1.4-naphthochinodimethans	44	21 a	11 a	Violettrote Nadeln	щ	C ₂₁ H ₁₄ O ₂ S ₂ (362.5)	Ber. 69.58 3.90 Gef. 69.54 3.91
25 b	3-Hydroxy-9.9-äthylen- dimercapto- 10- <i>p</i> -tolyl-10-carboxy- 1.4-naphthochinodimethans	27	21 b	11 a	Violette Blättchen	1	C ₂₂ H ₁₆ O ₂ S ₂ (376.5)	Ber. 70.17 4.29 Gef. 70.44 4.34
25 c	3-Hydroxy-9.9-0-phenylen- dimercapto- 10-phenyl-10-carboxy- 1.4-naphthochinodimethans	59	21 a	11 d	Rotviolette Nadeln	DMSO/ Ä	C ₂₅ H ₁₄ O ₂ S ₂ (410.5)	Ber. 73.14 3.44 Gef. 73.05 3.40

25d	3-Hydroxy-9.9-0-phenylen- dimercapto- 10-p-toly1-10-carboxy- 1.4-naphthochinodimethans	42	21b	11 <i>d</i>	Violettrote Nadeln	<u>р</u> мsо/ Ä	C ₂₆ H ₁₆ O ₂ S ₂ (424.5)	Ber. 73.55 Gef. 73.15	3.80 3.82	
27	7.7-o-Phenylendimercapto- 8-triphenylphosphonio-8- cyan-p-benzochinodime- thanperchlorat	45 d)	26 e)	pII	Leuchtend violettes Kristallpulver	I	C ₃₃ H ₂₃ NPS ₂]ClO ₄ (627.9)	Ber. 63.10 Gef. 63.69	3.69 4.10	
29a	-cyclohexadien-(2.5) 1-[5-Phenyi-1.2-dithiolyliden- (3)]-4-dicyanmethylen-	33	12a	2 8 a	Grünblaue Nädelchen	No. at	C ₁₈ H ₁₀ N ₂ S ₂ (318.4)	Ber. 67.90 Gef. 67.59	3.17 8.8 3.45 8.9	0 m
29 b	<pre>1-[1.2-Benzodithiolyliden-(3)]- 4-dicyanmethylen-</pre>	55	12a	28 b	Grünblaue Nädelchen	EE	C ₁₆ H ₈ N ₂ S ₂ (292.4)	Ber. 65.73 Gef. 65.76	2.76 9.5' 2.84 9.2(67
30a	1-[5-Phenyl-1.2-dithiolyliden- (3)]-4-dicyanmethylen-2.3- benzo-	ę	14a	28 a	Blauschwarze Nädelchen	- And Market	C ₂₂ H ₁₂ N ₂ S ₂ (368.5)	Ber. 71.70 Gef. 71.73	3.29 7.60 3.24 7.29	06
30 b	<pre>I-[1.2-Benzodithiolyliden-(3)]- 4-dicyanmethylen-2.3-benzo-</pre>	15	14a	28 b	Grünblaue Nadeln	1	$C_{20}H_{10}N_2S_2$ (324.4)	Ber. 70.15 Gef. 70.22	2.93 8.13 3.16 7.86	~~~~
31a	 I-[5-Phenyl-1.2-dithiolyliden- (3)]-4-dicyanmethylen- 2.3;5.6-dibenzo- 	55	16a	28 a	braunrote Kriställchen		C ₂₆ H ₁₄ N ₂ S ₂ (418.5)	Ber. 74.61 Gef. 74.95	3.38	
31 b	1-[5-Phenyl-1.2-dithiolyliden- (3)]-4-[äthoxycarbonyl-cyan- methylen]-2.3; 5.6-dibenzo-	PSC c)	16c	28 a	Violettrotes Pulver	Ä	C ₂₈ H ₁₉ NO ₂ S ₂ (465.6)	Ber. Gef.	3.2	- m
32	Lacton des 3-Hydroxy-1- [5-phenyl-1.2-dithiolyliden- (3)]-4-[phenyl-carboxy- methylen]-	16	20a	2 8a	Blaue Nädelchen	D	$C_{23}H_{14}O_2S_2$ (386.4)	Ber. 71.50 Gef. 71.42	3.65 3.83	
∃ = D D = = D = = D = =	Nucleophil, $E = Elektrophil.$ Diäthylenglykoldimethyläther, $EE = Ei$ rbeitung durch präparative Schichtchror	sessig, Ä = natographi	Äthanol, e, Kieselge	DMSO/Ä (I Merck PF	: 1) Gemisch Dimethylsu 254, Laufmittel Chlorofor	lfoxid/Äthanol :m.				

^{d)} Zur essigsauren Reaktionslösung wurde 70 proz. Perchlorsäure gegeben, die sofort ausgefallenen Kristalle wurden abgesaugt und mit Eisessig gewaschen. ^{e)} Das Ylid 26 wurde uns von Herrn *J. Sauer* und Herrn *H. Hindermayr* freundlicherweise zur Verfügung gestellt, vgl. 1, c.²⁸⁾.

		Tab. 9. Kondensationsprodukte aus Ke	tonen (bzw. e	inem Thion) und Ary	lmethylverbindung	en	
Edukte ^{a)} E	z	Produkte	Ausb. %	Farbe und Form	Summenformel (MolGew.)	Analyse C H	Z
Diphenyl- cvclonronenon	12 a	- <i>cyclohexadien-(2.5)</i> 1-[2.3-Diphenyl-cyclopropenyliden]- 4-dicvanmethylen- (42)	S	Rote Nadeln	$C_{24}H_{21}N_2$ (330.4)	Ber. 87.27 4.27 Gef. 87.61 4.50	
Diphenyl- cyclopropenon	14a	I-[2.3-Diphenyl-cyclopropenyliden] 4-dicyanmethylen-2.3-benzo- (43)	ε	Rote Nädelchen	$C_{28}H_{16}N_2$ (380.4)	Ber. 88.40 4.24 Gef. 88.33 4.36	
Diphenyl- cyclopropenon	16a	l-[2.3-Diphenyl-cyclopropenyliden]- 4-dicyanmethylen-2.3; 5.6-dibenzo- (44)	PSC ^{b)}	Rote Nädelchen	C ₃₂ H ₁₈ N ₂ (430.5)	Ber. 89.28 4.22 Gef. 89.49 4.41	6.51 6.80
2.6-Diphenyl- pyron-(4)	12 a	<pre>1-[2.6-Diphenyl-pyranyliden-(4)]- 4-dicyanmethylen- (45a)</pre>	6	Fast schwarze, feine Nadeln	$C_{26}H_{16}N_{2}O$ (372.4)	Ber. 83.84 4.34 Gef. 83.69 4.50	7.52 7.39
2.6-Dimethyl- pyron-(4)	12a	<pre>I-[2.6-Dimethyl-pyranyliden-(4)]- 4-dicyanmethylen- (45b)</pre>	PSC b,c)	Blaues Pulver	C ₁₆ H ₁₂ N ₂ O (248.3)		
2.6-Diphenyl- pyron-(4)	14a	1-[2.6-Diphenyl-pyranyliden-(4)]- 4-dicyanmethylen-2.3-benzo- (46)	18	Grünblaue Nädelchen	$C_{30}H_{18}N_2O$ (422.5)	Ber. 85.28. 4.30 Gef. 85.15 4.40	6.63 6.34
2.6-Diphenyl- pyron-(4)	16a	I-[2.6-Diphenyl-pyranyliden-(4)]- 4-dicyanmethylen-2.3; 5.6-dibenzo- (47a)	68	Violettbraune Nädelchen	C ₃₄ H ₂₀ N ₂ O (472.5)	Ber. 86.42 4.27 Gef. 85.71 4.31	5.93 6.21
2.6-Dimethyl- pyron-(4)	16a	I-[2.6-Dimethyl-pyranyliden-(4)]- 4-dicyanmethylen-2.3;5.6-dibenzo- (47b)	40	Bronzeglänzende Blättchen	C ₂₄ H ₁₆ N ₂ O (348.4)	Ber. 82.79 4.63 Gef. 82.63 4.78	
2.6-Diphenyl- dithiopyron-(4)	16a	I-[2.6-Diphenyl-thiopyranyliden-(4)]- 4-dicyanmethylen-2.3;5.6-dibenzo- (47c)	45	Violette Nädelchen	C ₃₄ H ₂₀ N ₂ S (488.6)	Ber. 83.59 4.12 Gef. 83.07 4.14	
2.6-Diphenyl- pyron-(4)	19	1-[2.6-Diphenyl-pyranyliden-(4)]- 2-dicyanmethylen-3.4; 5.6-dibenzo- cyclohexadien-(3.5) (48)	10	Violette Blättchen	C ₃₄ H ₂₀ N ₂ O (472.5)	Ber. 86.42 4.27 Gef. 86.56 4.21	5.93 5.78
a) E = Elektrophil, N b) PSC = Präparative c) Die Ausbeute war s	V = Nucle Schichtch so gering, c	ophil. romatographie, vgl. Tab. 8. 1aß keine Elementaranalyse möglich war.					

Jahrg. 101

Umsetzung von aciden Benzylverbindungen mit Diphenylcyclopropenon, γ -Pyronen und Dithio- γ -pyron: 0.01 Mol Benzylverbindung und 0.01 Mol Keton (bzw. Thion) wurden in 10-30 ccm Acetanhydrid etwa 20 Min. zum Sieden erhitzt. Beim Abkühlen kristallisierten die in Tab. 9 angeführten Produkte aus. Sie wurden abgesaugt und mit Eisessig, dann mit Äther gewaschen. In der Regel waren sie analysenrein.

7.7-Diphenyl-8.8-dicyan-p-benzochinodimethan (49): 0.71 g (0.005 Mol) 12a in 30 ccm absol. Benzol wurden mit 0.5 g (0.01 Mol) 50 proz. Natriumhydrid-Suspension und einem Tropfen Diäthylenglykoldimethyläther versetzt. Unter Gasentwicklung bildete sich das Natriumsalz. Dieses wurde mit 1.2 g (0.005 Mol) Benzophenondichlorid 8 Stdn. bei 80° gerührt, die Reaktionsmischung dann abgesaugt, das Filtrat im Rotationsverdampfer zur Trockne gebracht und der Rückstand aus Cyclohexan umkristallisiert. Ausb. 0.50 g (33%). Rote Nadeln, Schmp. 162°.

```
C<sub>22</sub>H<sub>14</sub>N<sub>2</sub> (306.4) Ber. C 86.25 H 4.61 N 9.15 Gef. C 86.41 H 4.89 N 9.10
```

HMO-Parameter

Für die Heteroatome und die entsprechenden Bindungen wurden die folgenden Parameter henützt:

Bindung	$h_{\mathbf{x}}$	k _{cx}	vgl. Lit.	
C=0	1	1	6)	
C≡N	0.6	1.8	30)	
C-CN		0.8	30)	
C-S	0	0.8/1	31)	

Für Schwefel wählten wir das von *Longuet-Higgins*³¹⁾ vorgeschlagene Modell. Es leitet sich vom Vergleich Thiophen—Benzol ab. Aus der Hybridisierung von einem 3p- und zwei 3 d-Orbitalen entstehen drei Hybrid-Orbitale, von den zwei durch zwei p-Kohlenstoff-Orbitale beschrieben werden. Die in der Diskussion der IR-Spektren angegebenen Effekte lassen sich jedoch auch mit einem einfachen Modell, Schwefel als ein Heterozentrum, beschreiben (vgl. dazu die Diskussion von *Zahradnik*³²⁾).

[244/68]

 ³⁰⁾ J. Halper, W. D. Closson und H. B. Gray, Theoret. chim. Acta [Berlin] 4, 174 (1966).
 ³¹⁾ H. C. Longuet-Higgins, Trans. Faraday Soc. 45, 173 (1949).

³²⁾ R. Zahradnik in Advances in Heterocyclic Chemistry 5, S. 1, Verlag Academic Press, New York und London 1965.